5.6.3 Вектор, модуль вектора, равенство векторов; сложение векторов и умножение вектора на число

5.6.3 Вектор, модуль вектора, равенство векторов; сложение векторов и умножение вектора на число

База знаний ЕГЭ Математика Добавлено: 31-07-2017, 00:05

Видеоурок 1: Понятие вектора




Видеоурок 2: Равенство векторов




Видеоурок 3: Сложение и вычитание векторов



Видеоурок 4: Умножение вектора на число



Лекция: Вектор, модуль вектора, равенство векторов; сложение векторов и умножение вектора на число


Вектор

Вектор – это тело, которое изучается в математике, но используется в большом количестве наук. Например, в физике существуют скалярные величины (те, что характеризуются значением – масса, температура и т.д.), а также векторные величины (сила, работа и другие).


Вектор – это величина, которая характеризуется не только значением, но и направлением. Иными словами, это направленный отрезок. 

Но кроме его длины, нам также важно, где находится его начало, а где конец.


Если вектор имеет свое начало в некоторой точке А, а заканчивается в точке В, то его обозначают следующим образом:


Кроме двух букв, вектор можно обозначить одной буквой со значком вектора сверху.


Длиной вектора (его модулем) называют расстояние между концом вектора и его началом. 


Для определения модуля вектора следует воспользоваться следующей формулой:




Кроме этого, модуль вектора может обозначаться следующим образом:



Если некоторый вектор имеет начало и конец в одной и той же точке, то такой вектор называют нулевым. Нулевой вектор обозначают, как



Если длина некоторого вектора равна единичному отрезку, то его называют единичным.


Если некоторые векторы расположены на одной прямой или же параллельны друг другу, то такие векторы называются коллинеарными.







Если некоторые векторы можно назвать коллинеарными, но кроме этого они направлены в одну сторону, то их можно назвать сонаправленными.





Если же наоборот два коллинеарных вектора смотрят в разные стороны, то их называют противоположно направленными.





Если же некоторые векторы являются коллинеарными, сонаправленными, а также имеют одинаковую длину (модуль), то их можно назвать равными.









Координаты вектора


Для нахождения координаты вектора следует вычесть соответствующие координаты его конца и начала.



Например, если начало вектора А (3; 6), а конец В (5;9), то этот вектор будет иметь следующие координаты: {2;3}.


Сложение и вычитание векторов


Чтобы сложить два вектора для получения нового, необходимо сложить соответствующие координаты.







Например, сложим вектор {2;3} с вектором {5;7}. В результате получим новый вектор с координатами {7;10}. С вычитанием все аналогично.


Умножение вектора на некоторое число


Чтобы умножить вектор на некоторое число, следует умножить каждую его координату на данное число.






Свойства:


  • Первоначальный вектор и вектор умноженный на некоторое число, который равный ему, являются параллельными.
  • Если число, на которое умножался вектор, больше нуля, то новый вектор будет сонаправлен первоначальному. Если же число меньше нуля, то векторы будут противоположно направленны.

 

Предыдущий урок
Следующий урок

  • 2.2 Характерные химические свойства и получение простых веществ - металлов: щелочных, щелочноземельных, алюминия; переходных элементов (меди, цинка, хрома, железа)
  • 2.1.3 «Просвещенный абсолютизм». Законодательное оформление сословного строя
  • 2.1.2 Северная война. Провозглашение Российской империи
  • 1.4.6 Смута. Социальные движения в России в начале XVII в. Борьба с Речью Посполитой и со Швецией
  • 1.2.1 Возникновение государственности у восточных славян. Князья и дружина. Вечевые порядки. Принятие христианства
  • Оставить комментарий