4.1.1 Понятие о производной функции, геометрический смысл производной

4.1.1 Понятие о производной функции, геометрический смысл производной

База знаний ЕГЭ Математика Добавлено: 3-08-2017, 08:05

Видеоурок: Производная и ее геометрический смысл




Лекция: Понятие о производной функции, геометрический смысл производной


Понятие о производной функции


Рассмотрим некоторую функцию f(x), которая будет непрерывной на всем промежутке рассмотрения. На рассматриваемом промежутке выберем точку х0, а также величину функции в данной точке.















Итак, давайте рассмотрим график, на котором отметим нашу точку х0, а также точку (х0 + ∆х). Напомним, что ∆х – это расстояние (разница) между двумя выбранными точками.


Так же стоит понимать, что каждому х соответствует собственное значение функции у. 


Разница значений функции в точке хи (х0 + ∆х) называется приращением данной функции: ∆у = f(х0 + ∆х) - f(х0).


Давайте обратим внимание на дополнительную информацию, которая имеется на графике – это секущая, которая названа КL, а также треугольник, который она образует с интервалами KN и LN.


Угол, под которым находится секущая, называется её углом наклона и обозначается α. Легко можно определить, что градусная мера угла LKN так же равна α.


А теперь давайте вспомним соотношения в прямоугольном треугольнике tgα = LN / KN = ∆у / ∆х.


То есть тангенс угла наклона секущей равен отношению приращения функции к приращению аргумента.


В свое время, производная – это предел отношения приращения функции к приращению аргумента на бесконечно малых интервалах.

 



Производная определяет скорость, с которой происходит изменение функции на некотором участке.


Геометрический смысл производной


Если найти производную любой функции в некоторой точке, то можно определить угол, под которым будет находится касательная к графику в данной токе, относительно оси ОХ. Обратите внимание на график – угол наклона касательно обозначается буквой φ и определяется коэффициентом k в уравнении прямой: y = kx + b.


То есть можно сделать вывод, что геометрическим смыслом производной является тангенс угла наклона касательной в некоторой точке функции.


Для нахождения производных необходимо пользоваться основными формулами, которые можно найти в таблице производных:



Предыдущий урок
Следующий урок

  • 2.2 Характерные химические свойства и получение простых веществ - металлов: щелочных, щелочноземельных, алюминия; переходных элементов (меди, цинка, хрома, железа)
  • 2.1.3 «Просвещенный абсолютизм». Законодательное оформление сословного строя
  • 2.1.2 Северная война. Провозглашение Российской империи
  • 1.4.6 Смута. Социальные движения в России в начале XVII в. Борьба с Речью Посполитой и со Швецией
  • 1.2.1 Возникновение государственности у восточных славян. Князья и дружина. Вечевые порядки. Принятие христианства
  • Оставить комментарий