2.5 Обмен веществ и превращения энергии - свойства живых организмов

2.5 Обмен веществ и превращения энергии - свойства живых организмов

База знаний ЕГЭ Биология Добавлено: 7-08-2017, 04:05

Видеоурок: Обмен веществ и превращения энергии. Стадии энергетического обмена




Лекция: Обмен веществ и превращения энергии - свойства живых организмов


Обмен веществ


Обмен веществ (метаболизм) – это химические процессы, являющиеся жизнью.

 

Базовой основой процесса жизни является синтез собственных веществ из продуктов расщепления полученных. Рассматриваются две разновидности метаболитических процессов:


  • пластический обмен – анаболизм или синтез, при котором происходит накопление потенциальной энергии в виде химических связей.

  • энергетический обмен – катаболизм, представляющий собой разложение веществ, с выделением энергии при разрыве связей.


Обе группы взаимосвязаны. Для синтеза нужна энергия, ее организм получает посредством катализа (расщепления).


Получение энергии посредством катализа


Жизнь возможна за счет использования химической и световой энергии. Автотрофные растения синтезируют глюкозу с помощью солнечного света из воды и углекислого газа. Многие бактерии живут за счет хемосинтеза – процесса окисления неорганических веществ, используя серные, азотные, углеродные соединения. Грибы и животные получают энергию и материю для синтеза, потребляя созданные растениями сахара и другие органические соединения. Некоторые организмы могут иметь смешанные виды питания и являться миксотрофами – эвглена, росянка.


Очень важна роль ферментов – они ускоряют химические реакции до необходимых для поддержания жизнедеятельности скоростей, в сотни тысяч раз. Без них жизнь невозможна, из-за низких скоростей химических реакций. Ферменты имеют белковую структуру, каждый является катализатором одного вида реакций. Свойства ферментов определяются их структурой – в молекуле белка-фермента имеется активный центр, взаимодействующий с целевыми химическими веществами.



Уровень активности ферментов определяется различными параметрами:

  • Температурой. С ее ростом активность повышается.

  • Кислотностью среды. Для работы большей части ферментов необходима нейтральная среда, кислая - предпочтительна для пищеварения млекопитающих, щелочная -- для ферментов секрета поджелудочной железы.

  • Количеством субстрата.


Названия белков-ферментов оканчиваются на -аза.


Особенностью энергетического обмена, характерной для аэробных организмов является его поэтапное прохождение. Выделяется три этапа:


  • Подготовительный. Это пищеварение, происходящее в пищеварительных вакуолях лизосом простейших, в ЖКТ у многоклеточных. Функционально – это процесс разложения макромолекул на мономеры.

  • Гликолиз. Происходит в цитоплазме. Это бескислородное превращение глюкозы с ее окислением. Происходит несколько каскадных химических реакций. В их результате из глюкозы получается 2 молекулы пировиноградной кислоты (пирувата) и 2 молекулы АТФ. Частично выделяющаяся в ходе реакций энергия запасается обратно в АТФ, часть ее – в виде тепла рассеивается в пространство.

  • Кислородный этап. Это - каскадный двуступенчатый процесс: цикл Кребса с последующим окислительным фосфорилированием (дыханием). Пируват на этом этапе превращается в углекислый газ и воду с образованием 34 молекул АТФ, а затем образованием еще 2 при дыхании. С химической точки зрения энергетический обмен выглядит как: С6Н12O6 + 6O2 = 6СO2 + 6Н2O + 38АТФ.


Другие виды получения энергии


Брожение. Один из основных способов получения энергии простейшими и некоторыми клетками высших животных. При этом, полученный из глюкозы пируват растительными клетками включается в спиртовое брожение, распадаясь на углекислый газ и спирт. У животных пируват вступает в молочнокислое брожение – он превращается в молочную кислоту. В условиях недостатка кислорода мышечные клетки прибегают к менее эффективному, но более быстрому способу синтеза АТФ. Излишки молочной кислоты, не успевающие включиться в метаболизм из-за недостатка кислорода вызывают боль в мышцах. Существуют еще такие виды брожения, как метановое (способ очистки сточных вод), маслянокислое, уксуснокислое.


Фотосинтез. Был доказан в 1630 г голландцем ван Гельмонтом, который обнаружил самостоятельное создание растениями питательных веществ. Изменение состава воздуха растениями доказано в 1771 г Д.Пристли. Сейчас наука рассматривает фотосинтез, как процессы синтеза клетками зеленых растений глюкозы из воды и углекислого газа под воздействием солнечного света.


Хлорофилл представляет собой сложную молекулу, состоящую из, примерно, десятка ароматических пятичленных колец, с магниевыми комплексами.


Достаточно изученная световая фаза фотосинтеза разделяется на несколько этапов:


  • полученный извне фотон становится причиной возбуждения молекулы хлорофилла, ее электроны сдвигаются на более высокий уровень;
    электроны подхватываются ионизированным никотинамиддифосфатом, что приводит к его востановлению;

  • происходит фотолиз воды - с разложением на ионизированный водород, 4 электрона, молекулу кислорода.


Эта первичная фаза происходит на складчатых образованиях внутреннего мембранного слоя - тилакоидах хлоропластов.Стопки мембран внутри пластиды называются граны.


Во время темновой фотосинтетической фазы между гранами внутри хлоропласта (в строме) производится синтез молекул углеводов, с использованием энергии АТФ никотиамиддифосфата, а также углекислого газа.


Хемосинтез. В условиях отсутствия питательных веществ и солнечного света обитают многие виды хемосинтезирующих бактерий:


  • железобактерии – получают энергию, увеличивая степень окисления железа - от двух до трехвалентного.

  • водородные – превращают в воду молекулярный водород.

  • тионовые – живут за счет окисления тиосульфатов и других соединений серы, а также ее молекулярной формы до серной кислоты. Многие из них могут обитать в экстремально кислых средах, индифферентны к высоким концентрациям тяжелых металлов, выщелачивая их из руд.

  • серобактерии – превращают сероводород в чистую серу и соли серной кислоты;
    нитрифицирующие – превращают аммиак в азотную и азотистую кислоты.


Хемосинтетики являются важным звеном круговорота веществ.


Предыдущий урок
Следующий урок

  • 2.2 Характерные химические свойства и получение простых веществ - металлов: щелочных, щелочноземельных, алюминия; переходных элементов (меди, цинка, хрома, железа)
  • 2.1.3 «Просвещенный абсолютизм». Законодательное оформление сословного строя
  • 1.4.6 Смута. Социальные движения в России в начале XVII в. Борьба с Речью Посполитой и со Швецией
  • 1.2.1 Возникновение государственности у восточных славян. Князья и дружина. Вечевые порядки. Принятие христианства
  • 1.3 Виды знаний
  • Оставить комментарий