1.4.2 Преобразования выражений, включающих операцию возведения в степень

1.4.2 Преобразования выражений, включающих операцию возведения в степень

База знаний ЕГЭ Математика Добавлено: 17-08-2017, 02:05

Видеоурок: Преобразование степенных выражений




Лекция: Преобразования выражений, включающих операцию возведения в степень


Давайте для начала вспомним, что такое натуральный показатель степени. 


Натуральный показатель степени показывает, сколько раз необходимо умножить число само на себя.


mn = m * m * m*...* m (количество множителей - n).


1. Возведение числа в степень с отрицательным показателем.

Чтобы возвести любое число в отрицательную степень, для начала необходимо преобразовать показатель, чтобы получить положительную степень. Для этого необходимо перевернуть дробь:




2. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

а1 = а

Например,

51 = 5.

3. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

а0 = 1

Например,

70 = 1

4. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

an * am = an+m

Например:

5* 54 = 56

5. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

an / am = an-m

Например,

5* 52 = 52

6. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

(an )m = an*m

Например,

(5)2 = 58

7. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b)m = am * bm

Например,

(5 * 8 )2 = 52 * 82

8. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

(a / b)m = am / bm


Предыдущий урок
Следующий урок

  • 2.3 Характерные химические свойства простых веществ неметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния
  • 2.2 Характерные химические свойства и получение простых веществ - металлов: щелочных, щелочноземельных, алюминия; переходных элементов (меди, цинка, хрома, железа)
  • 1.2.4 Общая характеристика неметаллов IVA – VIIA групп в связи с их положением в Периодической системе химических элементов Д.И.Менделеева и особенностями строения их атомов
  • 2.1.3 «Просвещенный абсолютизм». Законодательное оформление сословного строя
  • 1.2.1 Возникновение государственности у восточных славян. Князья и дружина. Вечевые порядки. Принятие христианства
  • Оставить комментарий