1.2.3 Синус, косинус, тангенс и котангенс числа
Итак, напоминаем, что при рассмотрении тригонометрических функций мы рассматриваем окружность, которая имеет единичный радиус. Данное упрощение используется для удобства. Все отношения справедливы для произвольных окружностей, с произвольным радиусом.
Пример. Давайте построим точки на единичной окружности, которые будут соответствовать повороту радиус-вектора на угол
Решение. За начало отсчета принимаем точку Р0. Угол, равный нулю радиан совпадает с данной точкой.
Мы знаем, что граничными считаются углы 0, π/2, π, 3π/2, 2π. Если использовать угол π/2 и разделить первую четверть на 3 равных части, то первое от начала отсчета разделение будет соответствовать углу π/6. На графике данная точка имеет место Рπ/6.
Давайте теперь вспомним, каким образом исчисляются углы, выраженные в радианной мере. Чему, например, соответствует в радианах π/4? Чтобы это узнать, следует числовое значение числа π разделить на 4.
3,14 : 4 = 0,78, если углу π/2 соответствует 3,14 : 2 = 1,57. Следовательно, на окружности угол, равный единице будет лежать выше π/4, но ниже π/2. Отрицательное значение угла симметрично положительному относительно оси ОХ.
Таким же образом следует найти и местонахождение угла, равного 2. Так как граничному прямому углу соответствует значение 1,57, то угол, равный двум, будет находиться во второй четверти.
Можно убедиться, что каждому числу соответствует своя ордината и абсцисса на плоскости.
Отсюда можно сделать вывод, что:
Синус некоторого числа - это значение ординаты на плоскости, которая соответствует точке этого числа на единичной окружности.
Косинус некоторого числа - это значение абсциссы на плоскости, которая соответствует точке этого числа на единичной окружности.
Тангенс некоторого числа - это значение, полученное в результате отношения синуса к косинусу, иначе говоря, отношение ординаты к абсциссе.
Котангенс некоторого числа - это значение, полученное в результате отношения косинуса к синусу, иначе говоря, отношение абсциссы к ординате.
Синус и косинус имеют период, равный 6,28. Тангенс и котангенс имеет период, равный 3,14.
Предыдущий урок | Следующий урок |
Оставить комментарий