2.3 Химический состав клетки. Макро- и микроэлементы
Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах
Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ
Обнаружено, что в клетках живых организмов постоянно содержатся в виде нерастворимых соединений и ионов около 80 химических элементов. Все они подразделяются на 2 большие группы по своей концентрации:
макроэлементы, содержание которых не ниже 0,01%;
микроэлементы – концентрация, которых составляет меньше 0,01%.
В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно -- больше 99%.
Макроэлементы:
Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.
Азот, кислород, водород, углерод. Это основные компоненты клетки.
Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.
Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.
Магний – компонент хлорофилла. Участвует в синтезе белков.
Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.
Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:
Цинк – компонент инсулина;
Медь – участвует в фотосинтезе и дыхании;
Кобальт – компонент витамина В12;
Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;
Фтор – компонент зубной эмали.
Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.
Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.
В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.
Неорганические вещества клетки
Вода. От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:
терморегуляции;
капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).
От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.
Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:
переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;
формировании нервных импульсов, имеющих электрохимическую природу;
сокращении мышц;
свертывании крови;
входят в состав белков;
фосфат-ион – компонент нуклеиновых кислот и АТФ;
карбонат-ион – поддерживает Ph в цитоплазме.
Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.
Органические вещества клетки
Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры.
Основные классы, имеющиеся в живых организмах:
Углеводы. В клетках присутствуют различные их виды -- простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений -- до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:
Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.
Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.
Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.
Сахароза (дисахарид) – источник энергии, образуется в растениях.
Мальтоза (дисахарид) – обеспечивает прорастание семян.
Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.
Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.
Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям). Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м. Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон. Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липидную структуру. Жиры входят в основу структуры мембран.
Белки или протеины являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовывать между собой связи. Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи. В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.
Структурные особенности белков:
первичная структура – аминокислотная цепочка;
вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;
третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;
четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.
Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры.
Белки выполняют в клетке множество функций:
ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);
транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;
защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела -- обеспечивают иммунитет.
структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;
регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;
энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.
Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.
ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано в 1953 г американцами Д. Уотсоном и Ф. Криком.
Мономерные ее единицы --нуклеотиды, имеющие принципиально общую структуру из:
фосфат-группы;
дезоксирибозы;
азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)
В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.
Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.
РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:
вместо тиминового нуклеотида – урациловый;
рибоза вместо дезоксирибозы.
Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.
Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это -- структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.
Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.
АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:
3 остатка фосфорной кислоты;
аденин;
рибозу.
Оставить комментарий