2.1.1 Квадратные уравнения
Видеоурок 1: Квадратное уравнение и его корни
Видеоурок 2: Решение квадратных уравнений
Лекция: Квадратные уравнения
Уравнение
Уравнение - это некое равенство, в выражениях которого имеется переменная.
Уравнение может иметь одно решение или несколько, или же не иметь его вообще.
Для решения любого уравнения его следует максимально упростить до вида:
- линейное: a*x = b;
- квадратное: a*x2 + b*x + c = 0.
То есть любые уравнение перед решением нужно преобразовать до стандартного вида.
Любое уравнение можно решить двумя способами: аналитическим и графическим.
На графике решением уравнения считаются точки, в которых график пересекает ось ОХ.
Квадратные уравнения
Уравнение можно назвать квадратным, если при упрощении оно приобретает вид:
a*x2 + b*x + c = 0.
При этом a, b, c являются коэффициентами уравнения, отличающиеся от нуля. А "х" - корень уравнения. Считается, что квадратное уравнение имеет два корня или могут не иметь решения вообще. Полученные корни могут быть одинаковыми.
"а" - коэффициент, который стоит перед корнем в квадрате.
"b" - стоит перед неизвестной в первой степени.
"с" - свободный член уравнения.
Если, например, мы имеем уравнение вида:
2х2-5х+3=0В нем "2" - это коэффициент при старшем члене уравнения, "-5" - второй коэффициент, а "3" - свободный член.
Решение квадратного уравнения
Существует огромное множество способов решения квадратного уравнения. Однако, в школьном курсе математики изучается решение по теореме Виета, а также с помощью дискриминанта.
Решение по дискриминанту:
При решении с помощью данного метода необходимо вычислить дискриминант по формуле:
Если при вычислениях Вы получили, что дискриминант меньше нуля, это значит, что данное уравнение не имеет решений.
Если дискриминант равен нулю, то уравнение имеет два одинаковых решения. В таком случае многочлен можно свернуть по формуле сокращенного умножения в квадрат суммы или разности. После чего решить его, как линейное уравнение. Или воспользоваться формулой:
Если же дискриминант больше нуля, то необходимо воспользоваться следующим методом:
Теорема Виета
Если уравнение приведенное, то есть коэффициент при старшем члене равен единице, то можно воспользоваться теоремой Виета.
Итак, предположим, что уравнение имеет вид:
Корни уравнения находятся следующим образом:
Неполное квадратное уравнение
Существует несколько вариантов получения неполного квадратного уравнения, вид которых зависит от наличия коэффициентов.
1. Если второй и третий коэффициент равен нулю (b = 0, с = 0), то квадратное уравнение будет иметь вид:
Данное уравнение будет иметь единственное решение. Равенство будет верным только в том случае, когда в качестве решения уравнения будет ноль.
2. Если второй коэффициент равен нулю (b = 0), то уравнение будет иметь следующий вид:
Для решения данного уравнения необходимо освободить корень от коэффициентов, в результате чего уравнение будет иметь следующий вид:
3. Если же свободный член равен нулю, то уравнение имеет следующий вид:
Для его решения необходимо вынести общий множитель за скобку. В результате этого мы имеем право каждый множитель приравнять к нулю. Это значит, что один корень всегда будет равен нулю, а второй вычисляется, как линейное уравнение по правилам нахождения неизвестного слагаемого.
Предыдущий урок | Следующий урок |
Оставить комментарий